sábado, 3 de abril de 2010

Unidad 1 - Técnicas Digitales

Técnicas Digitales
Desde la época primitiva el hombre sintió la necesidad de contar y realizar cálculos numéricos, los cuales con el transcurso del tiempo resultaban cada vez más complejos y en cuya realización empleó los más diversos métodos. La forma más elemental consistió en contar con los dedos de las manos, que tiene el inconveniente de no poder enumerar conjuntos de más de diez elementos. Como «solución» existía la posibilidad de utilizar a otras personas!!!.
El siguiente paso lo realizaron las antiguas civilizaciones de Egipto y de los valles asiáticos, que consistió en representar los números por grupos de guijarros en montones de diez. Este método con el tiempo derivó en el ábaco, que más evolucionado ha llegado a nuestros días.
Hasta el momento, los documentos más antiguos que se conocen fueron descubiertos en los años 3000 – 2800 ADNE, cerca del antiguo estuario del Eufrates, en Mesopotamia, pudiendo afirmarse que representaban el soporte físico del primer sistema para el control económico de que se tiene noticia: se trata de libros de cuentas y de inventarios redactados en escritura cuneiforme arcadiana en tablillas de arcilla. Paralelamente, aparece en Egipto la escritura jeroglífica, destinada originalmente a inscripciones en monumentos y edificios.
Ya en los años 79 – 78 ADNE, se construye en Roma el Tabularium, adoptándose los rollos de papiro empleados por griegos y egipcios, que pueden considerarse como uno de los primeros archivos centrales de un estado.
En el 868 ya se imprimían libros en China, existiendo como prueba de tal aseveración el Sutra del Diamante, versión china de un texto budista sánscrito.
Los diseñadores de sistemas informativos en cada época histórica se vieron favorecidos por la alta estima y consideración de los gobernantes que valoraban significativamente sus servicios.
Así, el diseñador de sistemas utilizó para almacenar información piedras (India y Tibet), monumentos (Egipto, Mesoamérica), cuerdas (Europa, Tibet, Imperio Inca), madera (Europa) e incluso el cuerpo humano mediante tatuajes (Benin), utilizando siempre en su trabajo la técnica disponible en su tiempo, reflejando el desarrollo de la ciencia en la época que les tocó vivir.

GENERACION 0 Computadoras mecánicas 1642-1945
Del ábaco a la primera calculadora mecánica pasaron varios siglos, atribuyéndose este hecho al físico y matemático Blaise Pascal (1623-62) quien dijo al respecto: "Ofrezco al público una pequeña máquina de mi iniciativa, con la cual, usted sólo, podrá realizar todas las operaciones aritméticas sin esfuerzo y se sentirá aliviado del trabajo que con harta frecuencia ha fatigado su espíritu cuando trabajaba con el ábaco y la pluma".
El siguiente paso lo dio el matemático alemán Liebnitz (1646-1716), quien introdujo a la máquina de Pascal la multiplicación de forma directa con la rueda dentada escalonada y no mediante sumas reiteradas como su predecesora.
Un nuevo avance se logró con los trabajos de Charles Babbage (1792-1817) quien estableció los conceptos básicos de las estructuras de las computadoras digitales y en 1812 propuso la idea de una máquina para tabular funciones matemáticas tales como logaritmos, etc., mediante aproximaciones de polinomios. En 1822 terminó un modelo que podía calcular diferencias con seis dígitos de precisión y posteriormente propuso construir una que utilizaba diferencias de 6to orden con 20 dígitos de precisión, pero perdió el interés en ésta cuando concibió su máquina analítica, conceptualmente más avanzada, pero recibida con escepticismo por sus contemporáneos y que a su muerte pasó al olvido.
La continuación de los trabajos de Babbage lo realizó su colaboradora Augusta Ada (1815-52) -condesa de Lovelace e hija de Lord Byron- la cual desarrolló varios programas para resolver problemas matemáticos avanzados, lo que la convierte en la primera programadora en la Historia de la Computación. Igualmente contribuyó a exponer, incluso con más claridad, las ideas de Babbage entre las que pueden señalarse las siguientes:
La Máquina Analítica no pretende, en absoluto, crear nada. Puede realizar lo que nosotros le mandamos.
En relación con el empleo de ciclos repetitivos y las instrucciones de salto expresó: "La máquina es capaz de hacer un examen, en ciertas circunstancias, para averiguar si se ha producido una contingencia posible, dos o más, y seguir después el rumbo que convenga.
En 1888 tiene lugar otro avance significativo, cuando el estadístico norteamericano Herman Hollerith inventó una máquina que contaba automáticamente los huecos perforados en una tarjeta de papel, lo que permitió utilizar este soporte para introducir información a los sistemas, que estuvo vigente hasta la década de los 70-80 del siglo XX.

Primera generación – bulbos 1945 – 1955
A partir del desarrollo de la electricidad a mediados del siglo XIX y los avances en la electrónica en el siglo XX, la Mecánica comienza a ceder terreno en este tipo de aplicaciones y surgen computadoras que emplean dispositivos electrónicos (diodos de vacío constituidos por dos electrodos encapsulados en una ampolla de vidrio al vacío entre los cuales circula una corriente y las más evolucionadas válvulas de vacío que disponen de rejillas colocadas entre los electrodos para regular la magnitud de la corriente), las cuales aventajan en velocidad, tamaño y fiabilidad a las mecánicas.
Posteriormente, el inglés George Boole desarrolló un sistema algebraico para la representación de operaciones lógicas, que constituyó el germen para el diseño de los circuitos lógicos y de cálculo en las computadoras, y la base matemática en que se apoyan algunos métodos actuales de diseño de sistemas informáticos y de bases de datos.

John Von Neumann (era el matemático más eminente en el mundo) hablaba muchos idiomas y tenía conocimientos de física y podía citar textos completos –se le podía comparar a Leonardo da Vinci. Para él fue obvio que programar computadoras con un gran número de interruptores como lo era EDVAC/ENIAC era lento, tedioso e inflexible. Se dio cuenta que el programa podía representarse en forma digital en la memoria de la computadora, junto con los datos. Percibió también que la torpe aritmética decimal en serie utilizada por ENIAC, en la que cada dígitio estaba representado por 10 bulbos (uno encendido y 9 apagados) podía ser sustituida por una aritmética binaria.

El diseño básico que el presentó por primera vez, se conoce como máquina de von Neumann. Se usó en EDSAC, la primera computadora de programa almacenado y sigue siendo la base de casi todas las computadoras digitales, aún ahora, más de medio siglo después.
La máquina de von Neumann tenía 5 partes básicas: la memoria, la unidad aritmética lógica, la unidad de control y el equipo de entrada salida.

En la década del 40, von Newman culmina la configuración de la arquitectura básica de las computadoras, al combinar los conceptos de programa almacenado y ruptura de la secuencia del programa mediante la toma de decisiones, en tanto en los 50 los trabajos empleando semiconductores condujeron al descubrimiento del transistor, base del desarrollo de los circuitos integrados, lo que permitió el tránsito de las computadoras de válvulas a las basadas en microprocesadores, cuyo surgimiento en los 70 originó una profunda transformación, tanto desde el punto de vista de la arquitectura de los sistemas de cómputo como de las técnicas de cómputo y la informática en su conjunto.

Segunda generación – transitores 1955 1965
El transitor fue inventado en los Bell Labs en 1948 por John Bardeen, Walter Brattain y William Schockley, que fueron galardonados con el premio Nobel de física en 1956. El transitor revolucionó a las computadoras, dejando a las computadoras de bulbos obsoletas.
Así se crearon las PDP-1 tenía la capacidad de graficar puntos en diferentes sitios. Los estudiantes utilizaron las PDP-1 para jugar guerras espaciales, el mundo tuvo su primer juego de video. Luego DEC (digital equipment corporation) introdujo la PDP-8 tenía una importante innovación: un bus único (omnibus) (Bus es un conjunto de alambres en paralelo que sirve para conectar los componentes de una computadora). IBM tenía la versión transitorizada la 7090 y la 7094. También tenía una pequeña máquina orientada hacia los negocios la 1401, que podía leer y grabar intas magnéticas, leer y perforar tarjetas e imprimir salidas. Era muy mala para la computación científica, pero era perfecta para la contabilidad comercial.

En 1964 una nueva compañía CDC (control data corporation) introdujo la 6600, más rápida y poderosa que la 7094 de IBM. El diseñador de la 6600 Seymour Cray, fue una figura legendaria similar a von neumann. Dedicó su vida a crear las supercomputadoras (6600, 7600, Cray-1).

En esta era también sobresale LA BURROUGHS B5000 que intentó incluir el software en el hardware, pero la idea cayó en el olvido, aunque luego surgiría más adelante.
Tercera generación – circuitos integrados 1965-1980
La invención del circuito integrado de silicio ROBERT NOYCE en 1958, hizo posible colocar docenas de transitores en un solo chip. Este empaquetamiento permitió construir computadoras más pequeñas, más rápidas y menos costosas que sus predecesores transitoriados. Algunas computadoras más importantes de esta generación son:
System/360 de IBM diseñada para computación científica como comercial. Contenía muchas innovaciones: la compatibilidad con otros modelos de IBM y la multiprogramación (tener varios programas en la memoria a la vez de modo que mientras no estaba esperando el término de una operación de entrada salida, otro podía realizar cálculos.
Fue también la primera máquina que podía emular (simular) otras computadoras.
Otra característica importante de la 360 fue un espacio de direcciones enormes (16 megabytes) pero luego IBM tuvo que reformular esta forma de direccionar la memoria y cambió a 232 o sea 4 GB de memoria (ahora ya existe de 64) en el libro ya está desactualizado y ya se habla de mas también.

Tercera generación – circuitos integrados 1965-1980
La invención del circuito integrado de silicio ROBERT NOYCE en 1958, hizo posible colocar docenas de transitores en un solo chip. Este empaquetamiento permitió construir computadoras más pequeñas, más rápidas y menos costosas que sus predecesores transitoriados. Algunas computadoras más importantes de esta generación son:
System/360 de IBM diseñada para computación científica como comercial. Contenía muchas innovaciones: la compatibilidad con otros modelos de IBM y la multiprogramación (tener varios programas en la memoria a la vez de modo que mientras no estaba esperando el término de una operación de entrada salida, otro podía realizar cálculos. Fue también la primera máquina que podía emular (simular) otras computadoras. Otra característica importante de la 360 fue un espacio de direcciones enormes (16 megabytes) pero luego IBM tuvo que reformular esta forma de direccionar la memoria y cambió a 232 o sea 4 GB de memoria (ahora ya existe de 64) en el libro ya está desactualizado y ya se habla de mas también.

Cuarta generación – integración a muy grande escala (1980….)
Ya se colocaban millones de transitores en un solo chip. Este avance se dio en computadoras pequeñas y más rápidas. Ya se podía hablar de “computadora personal”
Apple y Apple II diseñadas por Steve Jobs y Steve Wozniak se convirtieron en protagonistas para usuarios caseros y escuelas.
IBM introdujo entones la Personal Computer IBM, que fue la computadora más vendida. IBM no mantuvo el diseño en secreto y fue así como salieron muchos clones de la PC a costos mucho menores (Commodore, Apple, Amiga y Atari), aunque el ímpetu de la IBM PC fue tan grande que las demás fueron arrolladas.
IBM PC venía provisto del sistema operativo MS-DOS provisto en aquel entones por la pequeña corporación Microsoft. Luego pudieron producir un sucesor OS/2 que no tuvo mucha acogida. IBM y Microsoft se separan y Microsoft se dedica a hacer de windows un enorme éxito.
Intel y Microsoft lograron destronar luego a IBM.
A mediados de los 80 sale una nueva idea RISC reemplazando a arquitecturas complejas (CISC)
La industria de las computadoras sigue avanzando.
La rapidez del progreso tecnológico puede moderarse de acuerdo con una observación llamada Ley de Moore, (Gordon Moore, cofundador y director de Intel en 1965). Moore se dio cuenta de que cada nueva generación de chips de memoria se estaba introduciendo 3 años después de la anterior. Cada nueva generación tenía 4 veces mas memoria que su predecesora. Moore se percató de que el número de transitores de un chip estaba aumentando de forma constante y predijo que este crecimiento continuaría durante varias décadas. Hoy en día suele expresarse como que el número de transitores se duplica cada 18 meses (60 % en el nro. de transitores cada año). La ley se sigue cumpliendo.

No hay comentarios:

Publicar un comentario